Publication
DAC 2020
Conference paper

Accurate inference with inaccurate RRAM devices: Statistical data, model transfer, and on-line adaptation

View publication

Abstract

Resistive random-access memory (RRAM) is a promising technology for in-memory computing with high storage density, fast inference, and good compatibility with CMOS. However, the mapping of a pre-trained deep neural network (DNN) model on RRAM suffers from realistic device issues, especially the variation and quantization error, resulting in a significant reduction in inference accuracy. In this work, we first extract these statistical properties from 65 nm RRAM data on 300mm wafers. The RRAM data present 10-levels in quantization and 50% variance, resulting in an accuracy drop to 31.76% and 10.49% for MNIST and CIFAR-10 datasets, respectively. Based on the experimental data, we propose a combination of machine learning algorithms and on-line adaptation to recover the accuracy with the minimum overhead. The recipe first applies Knowledge Distillation (KD) to transfer an ideal model into a student model with statistical variations and 10 levels. Furthermore, an on-line sparse adaptation (OSA) method is applied to the DNN model mapped on to the RRAM array. Using importance sampling, OSA adds a small SRAM array that is sparsely connected to the main RRAM array; only this SRAM array is updated to recover the accuracy. As demonstrated on MNIST and CIFAR-10 datasets, a 7.86% area cost is sufficient to achieve baseline accuracy for the 65 nm RRAM devices.

Date

01 Jul 2020

Publication

DAC 2020

Authors

Share