About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Absence of Fermi level pinning at metal-InxGa1-xAs(100) interfaces
Abstract
Soft x-ray photoemission spectroscopy measurements of clean, ordered InxGa1-xAs (100) surfaces with Au, In, Ge, or Al overlayers reveal an unpinned Fermi level across the entire In alloy series. The Fermi level stabilization energies depend strongly on the particular metal and differ dramatically from those of air-exposed interfaces. This wide range of Schottky barrier height for III-V compounds is best accounted for by a chemically induced modification in metal-alloy composition.