About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INFORMS 2020
Talk
A unifying prediction-correction framework for online convex optimization
Abstract
There is a growing interest for online optimization, motivated by the need for efficient algorithms that solve streaming optimization problems. Modeling the online problem as a sequence of static problems for which a solver is available, we propose a unified prediction-correction framework. The prediction step employs past information to approximate future problems, and the correction step, warm-started by the prediction, solves newly observed problems. The proposed framework is compatible with broad classes of solvers, e.g. ADMM, and prediction schemes, like those employed in online learning.