About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INFORMS 2021
Talk
A Strongly Polynomial Algorithm for Risk Constrained Problems
Abstract
We consider a Markov Decision Process problem with risk related constraint. The constraint is a linearized variance approximation. We find a policy that maximizes a ratio of the reward expectation to its linearized variance. We show that under monotonicity assumption which is natural for risk related problem the Simplex algorithm with Gass-Saaty shadow-vertex pivoting rule is strongly polynomial for both cost models: discounted and expected average for infinite horizon. We show an application of the algorithm to the problem of maximization of the Sharpe ratio.