About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Transactions of the Japanese Society for Artificial Intelligence
Paper
A spectrum tree kernel
Abstract
Learning from tree-structured data has received increasing interest with the rapid growth of tree-encodable data in the World Wide Web, in biology, and in other areas. Our kernel function measures the similarity between two trees by counting the number of shared sub-patterns called tree q-grams, and runs, in effect, in linear time with respect to the number of tree nodes. We apply our kernel function with a support vector machine (SVM) to classify biological data, the glycans of several blood components. The experimental results show that our kernel function performs as well as one exclusively tailored to glycan properties.