About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ECS Meeting 2012
Conference paper
A self-aligned sacrificial emitter process for high performance SiGe HBT in BiCMOS
Abstract
A self-aligned sacrificial emitter (SASE) process has been successfully developed in a BiCMOS technology. Selective epitaxy of SiGe originally developed for sub-100 nm CMOS nodes is used for a raised extrinsic base. Process integration includes building a sacrificial emitter pedestal using a CMOS gate-like etch, isolation of the emitter to extrinsic base by oxide CMP, and oxide recess etch to expose the emitter window for the in-situ doped emitter. Electrical results are shown to be comparable to hardware manufactured using other BiCMOS integration schemes. An intriguing growth mode of selective epitaxy has been found to have higher growth rate for high index planes. © The Electrochemical Society.