Publication
Proteomics
Conference paper

A robust meta-classification strategy for cancer detection from MS data

View publication

Abstract

We propose a novel method for phenotype identification involving a stringent noise analysis and filtering procedure followed by combining the results of several machine learning tools to produce a robust predictor. We illustrate our method on SELDI-TOF MS prostate cancer data (http://home.ccr. cancer.gov/ncifdaproteomics/ppatterns.asp). Our method identified 11 proteomic biomarkers and gave significantly improved predictions over previous analyses with these data. We were able to distinguish cancer from non-cancer cases with a sensitivity of 90.31% and a specificity of 98.81%. The proposed method can be generalized to multi-phenotype prediction and other types of data (e.g., microarray data). © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.

Date

Publication

Proteomics

Authors

Topics

Share