About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TPDS
Paper
A protocol to achieve independence in constant rounds
Abstract
Independence is a fundamental property needed to achieve security in fault-tolerant distributed computing. In practice, distributed communication networks are neither fully synchronous or fully asynchronous, but rather loosely synchronized. By this, we mean that in a communication protocol, messages at a given round may depend on messages from other players at the same round. These possible dependencies among messages create problems if we need n players to announce independently chosen values. This task is called simultaneous broadcast. In this paper, we present the first constant round protocol for simultaneous broadcast in a reasonable computation model (which includes a common shared random string among the players). The protocol is provably secure under general cryptographic assumptions. In the process, we develop a new and stronger formal definition for this problem. Previously known protocols for this task required either O(log n) or expected constant rounds to complete (depending on the computation model considered). © 2000 IEEE.