About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
International Journal of Forecasting
Paper
A note on multi-step forecasting with functional coefficient autoregressive models
Abstract
This paper presents and evaluates alternative methods for multi-step forecasting using univariate and multivariate functional coefficient autoregressive (FCAR) models. The methods include a simple "plug-in" approach, a bootstrap-based approach, and a multi-stage smoothing approach, where the functional coefficients are updated at each step to incorporate information from the time series captured in the previous predictions. The three methods are applied to a series of U.S. GNP and unemployment data to compare performance in practice. We find that the bootstrap-based approach out-performs the other two methods for nonlinear prediction, and that little forecast accuracy is sacrificed using any of the methods if the underlying process is actually linear. © 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.