About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DAC 2019
Conference paper
A learning-based recommender system for autotuning design flows of industrial high-performance processors
Abstract
Logic synthesis and physical design (LSPD) tools automate complex design tasks previously performed by human designers. One timeconsuming task that remains manual is configuring the LSPD flow parameters, which significantly impacts design results. To reduce the parameter-tuning effort, we propose an LSPD parameter recommender system that involves learning a collaborative prediction model through tensor decomposition and regression. Using a model trained with archived data from multiple state-of-the-art 14nm processors, we reduce the exploration cost while achieving comparable design quality. Furthermore, we demonstrate the transfer-learning properties of our approach by showing that this model can be successfully applied for 7nm designs.