About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics B Photophysics and Laser Chemistry
Paper
A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm
Abstract
A reliable source of coherent ns pulses of infrared radiation continuously tunable between 1.4 and 22 μm has been designed and built with the aim of developing a time-resolved infrared vibrational spectroscopy for species adsorbed on surfaces. The system is based on a Nd: YAG-laser and dye-laser combination which drive difference mixing processes in a sequence of nonlinear optical crystals (two LiNbO3, and a CdSe or AgGaS2). The system operates at MW peak power levels above 2500 cm-1, at kW power levels from 1000-2500 cm-1 and at 10-100 W levels down to 450 cm-1. These power levels are certainly sufficient for spectroscopic purposes, and at shorter wavelengths molecular pumping and applications requiring high-power should be possible. Vibrational spectra of a monolayer of CO adsorbed on Pt in an electrochemical cell have been obtained in an initial application of this source. © 1986 Springer-Verlag.