About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
VEE 2015
Conference paper
A Hybrid I/O virtualization framework for RDMA-capable network interfaces
Abstract
RDMA-capable interconnects, providing ultra-low latency and high-bandwidth, are increasingly being used in the context of distributed storage and data processing systems. However, the deployment of such systems in virtualized data centers is currently inhibited by the lack of a flexible and high-performance virtualization solution for RDMA network interfaces. In this work, we present a hybrid virtualization architecture which builds upon the concept of separation of paths for control and data operations available in RDMA.With hybrid virtualization, RDMA control operations are virtualized using hypervisor involvement, while data operations are set up to bypass the hypervisor completely. We describe HyV (Hybrid Virtualization), a virtualization framework for RDMA devices implementing such a hybrid architecture. In the paper, we provide a detailed evaluation of HyV for different RDMA technologies and operations.We further demonstrate the advantages of HyV in the context of a real distributed system by running RAMCloud on a set of HyV-enabled virtual machines deployed across a 6-node RDMA cluster. All of the performance results we obtained illustrate that hybrid virtualization enables bare-metal RDMA performance inside virtual machines while retaining the flexibility typically associated with paravirtualization.