About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Optical and Quantum Electronics
Paper
A fully vectorial technique for scattering and propagation in three-dimensional stratified photonic structures
Abstract
We present a three-dimensional (3D) technique for computing light scattering and propagation in complex structures formed by scatterers embedded in a stratified background. This approach relies on the Green's tensor associated with the background and requires only the discretization of the scatterers, the entire stratified background being accounted for in the Green's tensor. Further, the boundary conditions at the edges of the computation window and at the different material interfaces in the stratified background are automatically fulfilled. Different examples illustrate the application of the technique to the modeling of photonic integrated circuits: waveguides with protrusions (single element 'grating') and notches. Subtle effects, like polarization crosstalks in an integrated optics device are also investigated.