About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICME 2003
Conference paper
A framework for moderate vocabulary semantic visual concept detection
Abstract
Extraction of semantic features from visual concepts is essential for meaningful content management in terms of filtering, searching and retrieval. Recently, machine learning techniques have been shown to provide a computational framework to map low level features to high level semantics. In this paper we expose these techniques to the challenge of supporting a moderately large lexicon of semantic concepts. Using the TREC 2002 benchmark corpus for training and validation we investigate a support vector machine based learning system for modeling 34 visual concepts. The detection results show excellent performance for a set of concepts with moderately large training samples. Promising performance is also observed for concepts with few training concepts.