About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2014
Conference paper
A family of discriminative training criteria based on the F-divergence for deep neural networks
Abstract
We present novel bounds on the classification error which are based on the f-Divergence and, at the same time, can be used as practical training criteria. There exist virtually no studies which investigate the link between the f-Divergence, the classification error and practical training criteria. So far only the Kullback-Leibler f-Divergence has been examined in this context to formulate a bound on the classification error and to derive the cross-entropy criterion. We extend this concept to a larger class of f-Divergences. We also successfully investigate if the novel training criteria based on the f-Divergence are suited for frame-wise training of deep neural networks on the Babel Vietnamese and Bengali speech recognition tasks. © 2014 IEEE.