About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISGT 2018
Conference paper
A data lens into MPPT efficiency and PV power prediction
Abstract
Condition monitoring and forecasting applications require accurate PV models that can predict power from weather parameters. However PV output is also dependent on the potentially suboptimal behavior of the MPPT controller, which can introduce both inefficiencies and prediction challenges. In this work, we use a data-driven approach to show that MPPT controllers do not always operate at the optimal knee point of the I-V curve and propose methods to quantify these inefficiencies. Based on these findings, we develop novel machine learning PV models that predict current and voltage separately and capture the behavior of the MPPT system more accurately. We present evaluation results using data collected from a large solar farm, which shows that the proposed models can reduce estimation errors significantly as compared to state of the art methods.