About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDE 2006
Conference paper
A complete and efficient algebraic compiler for XQuery
Abstract
As XQuery nears standardization, more sophisticated XQuery applications are emerging, which often exploit the entire language and are applied to non-trivial XML sources. We propose an algebra and optimization techniques that are suitable for building an XQuery compiler that is complete, correct, and efficient. We describe the compilation rules for the complete language into that algebra and present novel optimization techniques that address the needs of complex queries. These techniques include new query unnesting rewritings and specialized join algorithms that account for XQuery's complex predicate semantics. The algebra and optimizations are implemented in the Galax XQuery engine, and yield execution plans that are up to three orders of magnitude faster than earlier versions of Galax. © 2006 IEEE.