About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TC
Paper
3D-ICE: A compact thermal model for early-stage design of liquid-cooled ICs
Abstract
Liquid-cooling using microchannel heat sinks etched on silicon dies is seen as a promising solution to the rising heat fluxes in two-dimensional and stacked three-dimensional integrated circuits. Development of such devices requires accurate and fast thermal simulators suitable for early-stage design. To this end, we present 3D-ICE, a compact transient thermal model (CTTM), for liquid-cooled ICs. 3D-ICE was first advanced incorporating the 4-resistor model-based CTTM (4RM-based CTTM). Later, it was enhanced to speed up simulations and to include complex heat sink geometries such as pin fins using the new 2 resistor model (2RM-based CTTM). In this paper, we extend the 3D-ICE model to include liquid-cooled ICs with multi-port cavities, i.e., cavities with more than one inlet and one outlet ports, and non-straight microchannels. Simulation studies using a realistic 3D multiprocessor system-on-chip (MPSoC) with a 4-port microchannel cavity highlight the impact of using 4-port cavity on temperature and also demonstrate the superior performance of 2RM-based CTTM compared to 4RM-based CTTM. We also present an extensive review of existing literature and the derivation of the 3D-ICE model, creating a comprehensive study of liquid-cooled ICs and their thermal simulation from the perspective of computer systems design. Finally, the accuracy of 3D-ICE has been evaluated against measurements from a real liquid-cooled 3D-IC, which is the first such validation of a simulator of this genre. Results show strong agreement (average error < 10%), demonstrating that 3D-ICE is an effective tool for early-stage thermal-aware design of liquid-cooled 2D-/3D-ICs.