About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
September 2003
Solution:
A rational root of Pn(x) is an integer, because n!Pn(x) = n! + n!x + ... + xn is a monic polynomial with integer coefficients (to see this let x = a/b in lowest terms, substitute into n!Pn(x) = 0 and multiply through by bn; then b divides an, a contradiction).
Hence suppose Pn(x) = 0 with x an integer. Now choose a prime p dividing n; then p is odd since n is odd, and since n! + n!x + ... + nxn-1 = 0, it follows that p also divides x.
Next, by definition of Pn,
ex = Pn(x) + Rn(x) and e-x = Pn(-x) + Rn(-x)
where the remainder Rn(x) = xn + 1 / (n + 1)! + ... It follows on multiplying these together that
Pn(x) + Pn(-x) = 1 + xn + 1gn(x)
where gn(x) is a polynomial. Multiplying this through by (n)2 gives
(n!)2Pn(x) + Pn(-x) = (n!)2 + xn + 1Gn(x)
where Gn(x) = (n!)2gn(x) must have integer coefficients because the coefficients on the left hand side are integers. Since Pn(x) = 0, we find that (n!)2 is divisible by xn + 1, hence by pn + 1 where p is the odd prime chosen above.
But by Legendre's formula the greatest power of p that divides n! is
[n / p + n / p2 + ... ≤ n / p + n / p2 + ... = n / (p - 1)
where the [ ] means "greatest integer less than"(strict inequality holds but we do not need this).
Therefore n + 1 ≤ 2n / (p - 1). But then p ≤ 1 + 2n / (n + 1) < 3, a contradiction since p is an odd prime.]
If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com