About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
October 2008
<<September October November>>
The answers are:
-
- 2*p-1
- 1/(2*p-1)
- ((1-p)**n)*(p**n)*B(2*n,n)
- 1/sqrt(1-4*x)
They can be derived as follows:
-
- With each step the expected movement is p*(1)+(1-p)*(-1)= 2*p-1. So over many steps the frog will move towards plus infinity at a speed of (2*p-1).
- After n jumps the frog will have moved from 0 to about (2*p-1)*n. So it will have visited each number is this range about n/((2*p-1)*n)=1/(2*p-1) times.
- In order to be at 0 after 2*n jumps the frog must have made n +1 jumps and n -1 jumps. There are B(2*n,n) ways of ordering these jumps. Each of them will occur with probability ((1-p)**n)*(p**n). The result follows.
- The expected number of times (including the start) the frog visits 0 is the sum over n of the expression in 2. This will equal 1/(2*p-1). Let x=(1-p)*p. Then p**2-p+x=0. So p=(1+sqrt(1-4*x))/2 (taking this root as p>.5). So 2*p-1=sqrt(1-4*x). The result follows.
If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com