About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
November 2012
<<October November December>>
The problem was originally proposed almost a century ago (see Polya, G., "Zahlentheoretisches und wahrscheinlichkeitstheoretisches uber die sichtweite im walde," Arch. Math. Phys., 27 (1918): 135-142).
The answer is 1/sqrt(d), where d is the smallest integer satisfying d=a^2+b^2, where a is co-prime to b, and d>=R^2.
Clearly, d<=R^2+1 by choosing a=R and b=1; and d can be R^2 if and only if all the prime factors of R are 1 modulo 4.
In our case, R=9801=3^4*11^2, so the critical radius is 1/sqrt(R^2+1) which is 0.000102030404529629...
If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com