About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
May 2010
Part A:
We number the bins from the first bin, [0,0.25), as bin #0; and the last bin [0.75,1], as bin #3. A 10-tuple of 4-bins (b1,b2,...,b10) is realizable if and only if b1+b2+...+b10 <= 4. There is a one-to-one mapping of 10 non-negative integers whose sum is no more than 4, with an arrangement of 10 balls and 4 bars. Out of the (14 \choose 4) such arrangements, 10 are illegal (we have 0,1,2,3 so we cannot use 4). The answer is therefore 1001-10=991.
Part B:
If we take any realizable quantization and shift every probability D bins to the left (or right), it is easy to see that we get a non-realizable quantization. Therefore, there are at least 3^10 unrealizable quantization since all the ones with an empty first bin are either unrealizable, or at least one shift of them is. This bound is tight since, for example, [0,0.01) [0.01,0.02) [0.03 0.04) [0.04 1] achieves it by realizing exactly 4^10-3^10=989527 possibilities.
If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com