About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
January 2000
<<December January February>>
If she is correctly positioned, the derivative of (tangent theta) with respect to time is constant. Put another way, there are constants c and d such that tan(theta)=c*t+d where t=time. This is because the ball's height (above the fielder) is a quadratic function of time, with value 0 when t=0 (i.e. when it reaches the fielder), and its horizontal distance from the fielder is a linear functino of time, also achieving the value 0 when t=0. Dividing, we see that the slope is of the form c*t+d. |
If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com