About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
August 2019 - Solution
The restrictions A>F, A>G, A>H, B>E, B>G, B>H, C>E, C>F, C>H, D>E, D>F, and D>G leave the four pairs A<E, B<F, C<G, and D<H as possible.
However, it is easy to show that no two of them can be in the same permutation.
For example, if A<E, then F<A<E<B yields that B<F cannot hold.
Therefore, you need at least four permutations to cover all undetermined pairs.