Ponder This

Welcome to our monthly puzzles.
You are cordially invited to match wits with some of the best minds in IBM Research.

March 2023 - Challenge

<< February


This riddle was suggested by Richard Gosiorovsky - Thanks, Richard!

A prime chain is a sequence p_1, p_2,\ldots, p_n of prime numbers such that every number in the chain is obtained from the previous one by adding one digit to the right. For example, the prime chain:
7
73
739
7393
73939
739391
7393913
73939133
Is the longest prime chain (in base 10) where the first element has one digit. We say that p is a chained prime if it appears in a prime chain in base 10, starting from one-digit numbers. We can see that 73939133 is the largest chained prime. For any natural number n, we say that p is a n-exception chained prime if it appears in a prime chain where we allow up to n "exceptions" - elements of the chain that are not prime. For example, 3733799959397 is a 1-exception chained prime as can be seen from the chain:
3
37
373
3733
37337
373379
3733799
37337999
373379995
3733799959
37337999593
373379995939
3733799959397
Note that p can also be non-prime, if it is considered one of the exceptions.

Your goal: Find the largest number which is a 5-exception chained prime.

A Bonus "*" will be given for finding the largest 5-exception reverse chained prime, where "reverse" means the elements of the chain are constructed by adding digits to the left.

For example, 29137 is a reverse chained prime, as can be seen by the chain:
7
37
137
9137
29137


We will post the names of those who submit a correct, original solution! If you don't want your name posted then please include such a statement in your submission!

We invite visitors to our website to submit an elegant solution. Send your submission to the ponder@il.ibm.com.

If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com

 

Challenge: 01/03/2023 @ 11:50 AM EST
Solution: 05/04/2023 @ 12:00 PM EST
List Updated: 23/03/2023 @ 11:30 AM EST

People who answered correctly:

Lazar Ilic(1/3/2023 1:35 PM IDT)
Reiner Martin(1/3/2023 3:06 PM IDT)
*Alper Halbutogullari(1/3/2023 3:23 PM IDT)
Daniel Chong Jyh Tar(1/3/2023 6:00 PM IDT)
Andreas Puccio(1/3/2023 7:13 PM IDT)
Evan Schor(1/3/2023 10:01 PM IDT)
Todd Will(1/3/2023 10:59 PM IDT)
Michael Branicky(1/3/2023 11:44 PM IDT)
*K S(2/3/2023 6:34 AM IDT)
*Harald Bögeholz(2/3/2023 11:52 AM IDT)
Paul Revenant(2/3/2023 12:01 PM IDT)
Laurence Warne(2/3/2023 1:32 PM IDT)
*Bert Dobbelaere(3/3/2023 12:55 AM IDT)
*Gary M. Gerken(3/3/2023 5:05 AM IDT)
Michael Liepelt(3/3/2023 8:24 AM IDT)
Ethan (EJ) Watkins(3/3/2023 11:04 AM IDT)
Ralf Jonas(3/3/2023 12:14 PM IDT)
Kennedy(4/3/2023 3:48 PM IDT)
*Uoti Urpala(4/3/2023 5:02 PM IDT)
Clive Tong(4/3/2023 7:27 PM IDT)
Vladimir Volevich(4/3/2023 7:32 PM IDT)
*Marco Bellocchi(5/3/2023 1:01 AM IDT)
Dieter Beckerle(5/3/2023 10:40 AM IDT)
*Latchezar Christov(5/3/2023 5:05 PM IDT)
Florian Sikora(5/3/2023 7:14 PM IDT)
*Sanandan Swaminathan(6/3/2023 11:08 AM IDT)
*Bertram Felgenhauer(6/3/2023 4:20 PM IDT)
Lorenzo Gianferrari Pini(6/3/2023 6:11 PM IDT)
*Edwin Hall(6/3/2023 8:47 PM IDT)
*Andreas Knüpfer(6/3/2023 10:21 PM IDT)
Dominik Reichl(7/3/2023 12:49 AM IDT)
*Tim Walters(7/3/2023 11:34 PM IDT)
Mark Rickert(10/3/2023 7:33 AM IDT)
Hakan Summakoğlu(10/3/2023 6:06 PM IDT)
*David Greer(10/3/2023 9:22 PM IDT)
Daniel Stanley(11/3/2023 1:04 AM IDT)
*Martin Thorne(11/3/2023 3:21 AM IDT)
*Peyo(11/3/2023 2:03 PM IDT)
David F.H. Dunkley(11/3/2023 3:13 PM IDT)
*Chris Shannon(12/3/2023 8:43 PM IDT)
*Alexander Marschoun(13/3/2023 11:59 AM IDT)
*Stéphane Higueret(13/3/2023 12:58 PM IDT)
Luke Pebody(14/3/2023 11:39 AM IDT)
Anders Bisbjerg Madsen(15/3/2023 9:43 PM IDT)
Phil Proudman(16/3/2023 6:52 PM IDT)
Aaron Jackson(17/3/2023 12:03 AM IDT)
Sachal Mahajan(17/3/2023 1:15 AM IDT)
Kang Jin Cho(17/3/2023 5:33 PM IDT)
*Franciraldo Cavalcante(20/3/2023 3:07 AM IDT)
Quentin Higueret(20/3/2023 11:21 AM IDT)