About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DAC 1997
Conference paper
Zeros and passivity of Arnoldi-reduced-order models for interconnect networks
Abstract
CAD tools and research in the area of reduced-order modeling of large linear interconnect networks have evolved from merely finding a Pade approximation for the given network transfer function to finding an approximate transfer function that preserves such circuit-theoretic properties of the network as stability, passivity, and RLC synthesizability. In particular, preserving passivity guarantees that the reduced-order models will be well-behaved when embedded back in the circuit where the interconnect network originated. While stability can be ascertained by studying the poles of the reduced-order transfer function, passivity depends on both the poles and zeros of the network driving-point impedance. In this paper, we present a novel method for studying the zeros of reduced-order transfer functions and show how it yields conclusions about passivity and synthesizability. Moreover, in order to obtain a guaranteed-passive reduced-order model for multiport RC networks, a new algorithm based on the Arnoldi iteration is presented. This algorithm is as computationally efficient as the one used to generate guaranteed-stable reduced-order models [1].