About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Photonics
Paper
Zero-Dimensional Organic Exciton-Polaritons in Tunable Coupled Gaussian Defect Microcavities at Room Temperature
Abstract
We demonstrate strong light-matter interaction at ambient conditions between a ladder-type conjugated polymer and the individual modes of a vertical microcavity with tunable resonance frequencies. Zero-dimensional wavelength-scale confinement for the polaritons is achieved through a sub-micrometer-sized Gaussian defect, resulting in a vacuum Rabi splitting of the polariton branches of 2g = 166 meV. By placing a second Gaussian defect nearby, we create a polaritonic molecule with a tunnel coupling strength of up to 2J ≈ 50 meV. This platform enables the creation of tailor-made potential landscapes with wavelength-scale dimensions and tunable coupling strengths beyond the thermal energy, opening a route toward room-temperature polariton-based quantum simulators.