About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Current Opinion in Neurobiology
Review
Why neurons mix: High dimensionality for higher cognition
Abstract
Neurons often respond to diverse combinations of task-relevant variables. This form of mixed selectivity plays an important computational role which is related to the dimensionality of the neural representations: high-dimensional representations with mixed selectivity allow a simple linear readout to generate a huge number of different potential responses. In contrast, neural representations based on highly specialized neurons are low dimensional and they preclude a linear readout from generating several responses that depend on multiple task-relevant variables. Here we review the conceptual and theoretical framework that explains the importance of mixed selectivity and the experimental evidence that recorded neural representations are high-dimensional. We end by discussing the implications for the design of future experiments.