Publication
SIGIR 2011
Conference paper

Who should share what? Item-level social influence prediction for users and posts ranking

View publication

Abstract

People and information are two core dimensions in a social network. People sharing information (such as blogs, news, albums, etc.) is the basic behavior. In this paper, we focus on predicting item-level social influence to answer the question Who should share What, which can be extended into two information retrieval scenarios: (1) Users ranking: given an item, who should share it so that its diffusion range can be maximized in a social network; (2) Web posts ranking: given a user, what should she share to maximize her influence among her friends. We formulate the social influence prediction problem as the estimation of a user-post matrix, in which each entry represents the strength of influence of a user given a web post. We propose a Hybrid Factor Non-Negative Matrix Factorization (HF-NMF) approach for item-level social influence modeling, and devise an efficient projected gradient method to solve the HF-NMF problem. Intensive experiments are conducted and demonstrate the advantages and characteristics of the proposed method.

Date

Publication

SIGIR 2011

Authors

Share