About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CSCCVPR 1998
Conference paper
Well-behaved, tunable 3D-affine invariants
Abstract
We derive and discuss a set of parametric equations which, when given a convex 3D feature domain, K, will generate affine invariants with the property that the invariants' values are uniformly distributed in the region [0,1]×[0,1]×[0,1]. Once the shape of the feature domain K is determined and fixed it is straightforward to compute the values of the parameters and thus the proposed scheme can be tuned to a specific feature domain. The features of all recognizable objects (models) are assumed to be three-dimensional points and uniformly distributed over K. The scheme leads to improved discrimination power, improved computational-load and storage-load balancing and can also be used to determine and identify biases in the database of recognizable models (over-represented constructs of object points). Obvious enhancements produce rigid-transformation and similarity-transformation invariants with the same good distribution properties, making this approach generally applicable.