About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Vortex variable-range-hopping resistivity in superconducting films
Abstract
We study both classical and quantum vortex creep in disordered thin-film superconductors in an applied magnetic field. Quantum tunneling of vortices leads to a variable-range-hopping resistivity with a non-Arrhenius temperature dependence at low T. Motts 1/3 law is modified by long-range vortex interactions, and a numerical analysis enables us to estimate a temperature exponent between roughly 2/3 and 4/5. At higher T, a classical hopping regime is expected with a current-density scale for nonlinearities varying (roughly) as T3. © 1991 The American Physical Society.