About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INTERSPEECH - Eurospeech 2005
Conference paper
Voicing features for robust speech detection
Abstract
Accurate speech activity detection is a challenging problem in the car environment where high background noise and high amplitude transient sounds are common. We investigate a number of features that are designed for capturing the harmonic structure of speech. We evaluate separately three important characteristics of these features: 1) discriminative power 2) robustness to greatly varying SNR and channel characteristics and 3) performance when used in conjunction with MFCC features. We propose a new features, the Windowed Autocorrelation Lag Energy (WALE) which has desirable properties.