About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2020
Conference paper
Visual Objects As Context: Exploiting Visual Objects for Lexical Entailment
Abstract
We propose a new word representation method derived from visual objects in associated images to tackle the lexical entailment task. Although it has been shown that the Distributional Informativeness Hypothesis (DIH) holds on text, in which the DIH assumes that a context surrounding a hyponym is more informative than that of a hypernym, it has never been tested on visual objects. Since our perception is tightly associated with language, it is meaningful to explore whether the DIH holds on visual objects. To this end, we consider visual objects as the context of a word and represent a word as a bag of visual objects found in images associated with the word. This allows us to test the feasibility of the visual DIH. To better distinguish word pairs in a hypernym relation from other relations such as co-hypernyms, we also propose a new measurable function that takes into account both the difference in the generality of meaning and similarity of meaning between words. Our experimental results show that the DIH holds on visual objects and that the proposed method combined with the proposed function outperforms existing unsupervised representation methods.