David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence
In this paper, we propose video summarization using reinforcement learning. The importance score of each frame in a video is calculated from the user's actions in handling similar previous frames; if such frames were watched rather than skipped, a high score is assigned. To calculate the score, instead of using raw feature vectors extracted from images, we use feature vectors projected on eigenspace: as a result, we can deal with the features comprehensively. We also give an algorithm that uses the reinforcement learning method to create a personalized video summary. The summarization algorithm is applied to a soccer video to confirm its effectiveness.
David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence
Minerva M. Yeung, Fred Mintzer
ICIP 1997
Graham Mann, Indulis Bernsteins
DIMEA 2007
Fearghal O'Donncha, Albert Akhriev, et al.
Big Data 2021