Publication
VSTIA 2013
Conference paper

Video-CRM: Understanding customer behaviors in stores

View publication

Abstract

This paper describes two real-time computer vision systems created 10 years ago that detect and track people in stores to obtain insights of customer behavior while shopping. The first system uses a single color camera to identify shopping groups in the checkout line. Shopping groups are identified by analyzing the inter-body distances coupled with the cashier's activities to detect checkout transactions start and end times. The second system uses multiple overhead narrow-baseline stereo cameras to detect and track people, their body posture and parts to understand customer interactions with products such as "customer picking a product from a shelf". In pilot studies both systems demonstrated real-time performance and sufficient accuracy to enable more detailed understanding of customer behavior and extract actionable real-time retail analytics. © 2013 SPIE-IS&T.

Date

Publication

VSTIA 2013