About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICCAD 2007
Conference paper
Variation-aware performance verification using at-speed structural test and statistical timing
Abstract
Meeting the tight performance specifications mandated by the customer is critical for contract manufactured ASICs. To address this, at speed test has been employed to detect subtle delay failures in manufacturing. However, the increasing process spread in advanced nanometer ASICs poses considerable challenges to predicting hardware performance from timing models. Performance verification in the presence of process variation is difficult because the critical path is no longer unique. Different paths become frequency limiting in different process corners. In this paper, we present a novel variation-aware method based on statistical timing to select critical paths for structural test. Node criticalities are computed to determine the probabilities of different circuit nodes being on the critical path across process variation. Moreover, path delays are projected into different process corners using their linear delay function forms. Experimental results for three multimillion gate ASICs demonstrate the effectiveness of our methods. © 2007 IEEE.