Publication
ArgMining 2017
Conference paper

Unsupervised corpus-wide claim detection

Abstract

Automatic claim detection is a fundamental argument mining task that aims to automatically mine claims regarding a topic of consideration. Previous works on mining argumentative content have assumed that a set of relevant documents is given in advance. Here, we present a first corpus- wide claim detection framework, that can be directly applied to massive corpora. Using simple and intuitive empirical observations, we derive a claim sentence query by which we are able to directly retrieve sentences in which the prior probability to include topic-relevant claims is greatly enhanced. Next, we employ simple heuristics to rank the sentences, leading to an unsupervised corpus-wide claim detection system, with precision that outperforms previously reported results on the task of claim detection given relevant documents and labeled data.

Date

08 Sep 2017

Publication

ArgMining 2017

Share