About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2006
Conference paper
Unsupervised adaptation of a stochastic language model using a Japanese raw corpus
Abstract
The target uses of Large Vocabulary Continuous Speech Recognition (LVCSR) systems are spreading. It takes a lot of time to build a good LVCSR system specialized for the target domain because experts need to manually segment the corpus of the target domain, which is a labor-intensive task. In this paper, we propose a new method to adapt an LVCSR system to a new domain. In our method, we stochastically segment a Japanese raw corpus of the target domain. Then a domain-specific Language Model (LM) is built based on this corpus. All of the domain-specific words can be added to the lexicon for LVCSR. Most importantly, the proposed method is fully automatic. Therefore, we can reduce the time for introducing an LVCSR system drastically. In addition, the proposed method yielded a comparable or even superior performance to use of expensive manual segmentation. © 2006 IEEE.