About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Unitary Subharmonic Response and Floquet Majorana Modes
Abstract
Detection and manipulation of excitations with non-Abelian statistics, such as Majorana fermions, are essential for creating topological quantum computers. To this end, we show the connection between the existence of such localized particles and the phenomenon of unitary subharmonic response (SR) in periodically driven systems. In particular, starting from highly nonequilibrium initial states, the unpaired Majorana modes exhibit spin oscillations with twice the driving period, are localized, and can have exponentially long lifetimes in clean systems. While the lifetime of SR is limited in translationally invariant systems, we show that disorder can be engineered to stabilize the subharmonic response of Majorana modes. A viable observation of this phenomenon can be achieved using modern multiqubit hardware, such as superconducting circuits and cold atomic systems.