About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Solid State Chemistry
Paper
Transport, optical, and magnetic properties of the conducting halide perovskite ch3nh3sni3
Abstract
A low-temperature (T ≤ 100°C) solution technique is described for the preparation of polycrystalline and single crystal samples of the conducting halide perovskite, CH3NH3SnI3. Transport, Hall effect, magnetic, and optical properties are examined over the temperature range 1.8-300 K, confirming that this unusual conducting halide perovskite is a low carrier density p-type metal with a Hall hole density, 1/RHe ≃ 2 × 1019 cm-3. The resistivity of pressed pellet samples decreases with decreasing temperature with resistivity ratio ρ(300 K)/ρ(2 K) ≃ 3 and room temperature resistivity ρ(300 K) ≃ 7 mΩ-cm. A free-carrier infrared reflectivity spectrum with a plasma edge observed at approximately 1600 cm-1 further attests to the metallic nature of this compound and suggests a small optical effective mass, m* ≃ 0.2. © 1995 Academic Press.