About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
JPDC
Paper
Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal
Abstract
A critical feature of IaaS cloud computing is the ability to quickly disseminate the content of a shared dataset at large scale. In this context, a common pattern is collective read, i.e., accessing the same VM image or dataset from a large number of VM instances concurrently. Several approaches deal with this pattern either by means of pre-broadcast before access or on-demand concurrent access to the repository where the image or dataset is stored. We propose a different solution using a hybrid strategy that augments on-demand access with a collaborative scheme in which the VMs leverage similarities between their access pattern in order to anticipate future read accesses and exchange chunks between themselves in order to reduce contention to the remote repository. Large scale experiments show significant improvement over conventional approaches from multiple perspectives: completion time, sustained read throughput, fairness of I/O read operations and bandwidth utilization.