About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGCOMM 2013
Conference paper
To 4,000 compute nodes and beyond: Network-aware vertex placement in large-scale graph processing systems
Abstract
The explosive growth of "big data" is giving rise to a new breed of large scale graph systems, such as Pregel. This poster describes our ongoing work in characterizing and minimizing the communication cost of Bulk Synchronous Parallel (BSP) graph mining systems, like Pregel, when scaling to 4,096 compute nodes. Existing implementations generally assume a fixed communication cost. This is sufficient in small deployments as the BSP programming model (i.e., overlapping computation and communication) masks small variations in the underlying network. In large scale deployments, such variations can dominate the overall runtime characteristics. In this poster, we first quantify the impact of network communication on the total compute time of a Pregel system. We then propose an efficient vertex placement strategy that subsamples highly connected vertices and applies the Reverse Cuthill-McKee (RCM) algorithm to efficiently partition the input graph and place partitions closer to each other based on their expected communication patterns. We finally describe a vertex replication strategy to further reduce communication overhead. © 2013 Authors.