About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IRE Transactions on Electronic Computers
Paper
Time Average Thermal Properties of a Computer Utilizing Thin-Film Superconducting Elements
Abstract
It is necessary to understand the static thermal properties of cryotron gates before one can predict the limitations associated with dissipative heating of a complex cryotronic computer. An experimental program has been conducted to determine the thermal properties of isolated and of thermally coupled gates. All experiments reported in this paper were performed on tin gates evaporated onto glass substrates. The total thermal conductance K of a gate is defined, and experimental values of K are presented as a function of power and gate geometry. An analysis of the heat flow is given, based on a temperature-dependent coefficient of heat transfer. Theoretical values of K and temperature distribution are derived. The theory qualitatively predicts the temperature variation. Finally, the results are extrapolated to estimate the number of cryotrons that can be used safely in a thermally coupled system. COPYRIGHT © 1962—THE INSTITUTE OF RADIO ENGINEERS, INC.