Publication
Journal of Applied Physics
Paper

Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy

View publication

Abstract

We use pulses of electrical, mechanical, and thermal energy to determine the ignition thresholds of self-propagating reactions in Al/(Ni-7 V) and Al/Inconel multilayers. The energy density and power density required to initiate reactions in a Al/(Ni-7 V) foil with a 50 nm bilayer is compared for all three techniques to demonstrate the importance of heat loss on ignition thresholds and its dependence on the test volume and the surrounding thermal resistance. In addition, ignition is shown to occur at temperatures as low as 232°C when heat losses are very small suggesting that ignition can be controlled by atomic mixing in the solid state. The experiments demonstrate that the ignition threshold drops with increasing ignition volume, and it rises with increasing bilayer spacing and with increasing intermixed thickness. These trends are also supported by an analytical model we derive to predict the effects of ignition volume, multilayer microstructure, and physical properties on the ignition threshold. We calculate an activation energy of 77.3 ± 1.3 kJ/mol for solid state mixing based on measured ignition temperatures. © 2013 American Institute of Physics.

Date

02 Jan 2013

Publication

Journal of Applied Physics

Authors

Share