About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Nano
Paper
Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres
Abstract
Figure Persented: We introduce a cost-effective method of forming size-tunable arrays of nanocones to act as a three-dimensional (3D) substrate for hydrogenated amorphous silicon (a-Si:H) solar cells. The method is based on self-assembled tin nanospheres with sizes in the range of 20 nm to 1.2 μm. By depositing these spheres on glass substrates and using them as an etch mask, we demonstrate the formation of glass nanopillars or nanocones, depending on process conditions. After deposition of 150 nm thick a-Si:H solar cell p-i-n stacks on the glass nanocones, we show an output efficiency of 7.6% with a record fill factor of ∼69% for a nanopillar-based 3D solar cell. This represents up to 40% enhanced efficiency compared to planar solar cells and, to the best of our knowledge, is the first demonstration of nanostructured p-i-n a-Si:H solar cells on glass that is textured without optical lithography patterning methods. © 2011 American Chemical Society.