About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Thin palladium silicide contacts to silicon
Abstract
A new approach to the development of very thin Pd2Si-to-Si contacts for possible future use in ultrasmall devices is described. It is based on the principle of diluting the silicide-forming metal (Pd in this case) with Si, by codeposition of these two elements onto a single-crystal Si substrate. The composition of the codeposited layer has been chosen as Pd 80Si20, which is a metastable alloy with an amorphous structure. During annealing of the layered structure, Pd is extracted from the amorphous alloy to form the metal-rich and very stable compound Pd2Si at the interface. At the same time, the decomposing Pd80Si 20 is also converted in Pd2Si. In this way a silicide is formed for which only ∼50% of the required Si need be supplied by the Si-substrate, resulting in a very shallow silicide contact. In the illustrated case, with 400 Å of Pd80Si20 on Si〈100〉, only ∼80-100 Å of substrate Si is consumed. The microstructural properties of the formed silicide have been studied by in situ transmission electron microscope experiments, while the electrical characteristics of Pd 2Si-to-Si Schottky diodes, fabricated by this technique, have been studied by Schottky barrier height (SBH) measurements from the current-voltage curves. By choosing the annealing treatments of these two sets of identical specimens, the microstructural and electrical properties could be correlated. It is shown that overannealing of a Pd2Si-to-Si contact formed in this way should be avoided, since this gives rise to a lowering of the SBH. Finally, it is demonstrated that initially bad Schottky diodes (ideality factor n≳1) can be restored to a good n?1 condition by annealing.