About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Thermal stress analysis of pin grid array structures: Module and card interactions
Abstract
While primary thermal stress analysis of pin grid arrays considers a nonflexible card and module delineating the structure, in this paper we consider the stress relief (resulting in a “secondary” force system) afforded by bending and stretching of the delineating plates. The primary axial force F, plate moments, Mu M2, and shear V are considered acting in radial planes, and the secondary pin forces P are solved by stipulating compatibility of deformations at the two pin ends. A collocation technique is used to evaluate the plate equations in polar symmetry. The contributions of transverse plate compliances, and in-plane compliances are evaluated numerically for a 50 mm ceramic module, and compared with known experimental force measurements. © 1992 ASME.