About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
The Journal of Chemical Physics
Paper
Theory of fluorescence depolarization by anisotropic rotational diffusion
Abstract
The general expressions for the time-dependent fluorescence depolarization caused by anisotropic rotation diffusion have been obtained. It is shown that after an instantaneous exciting light pulse, the parallel and perpendicular components of fluorescence can have a maximum of six exponential decays and the difference of these two components a maximum of five decays. The present results differ from those of previous studies and the differences are discussed.