About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
The Journal of Chemical Physics
Paper
The use of holography to investigate complex photochemical reactions
Abstract
The growth of a hologram can be used to follow the temporal course of a photochemical reaction. In this paper the application of this technique to reactions involving more than one photochemical step is considered. A theoretical framework is developed by which the hologram growth curves can be predicted provided one knows the appropriate kinetic equations. Three different kinetic schemes are explicitly considered: a one-step reaction, two parallel reactions, and a two-step consecutive reaction scheme. The calculations are compared with experimental results obtained for the reaction of benzophenone in polymethylmethacrylate. © 1982 American Institute of Physics.