About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Mechanics, Transactions ASME
Paper
The stability of a spinning elastic disk with a transverse load system
Abstract
This paper presents results of an investigation on the effect of a transverse load on the stability of a spinning elastic disk. The disk rotates at constant angular velocity and the load consists of a mass distributed over a small area of the disk, a spring, and a dashpot. The equation of motion for the transverse vibration of the disk is written as a system of linear ordinary differential equations with constant coefficients. The analysis indicates that the disk system is unstable for speeds in a region above the critical speeds of vibration of the spinning disk due to the effects of load stiffness. The mass and damping of the load system cause a terminal instability and other instabilities occur as a result of modal interaction. © 1976 by ASME.